I’ve just published the first version of my latest project, a quantum computing library in C# called Quantum.NET that allows the manipulation of qubits and the modeling of quantum circuits.
It is available as a NuGet package under Lachesis.QuantumComputing, and the source code can be found on GitHub at phbaudin/quantum-computing.
The way it works is pretty straightforward. A qubit can be created from its probability amplitudes:
		
		
			
			
			
			
				
					
				| 
					
				 | 
						Qubit qubit = new Qubit(Complex.One / Math.Sqrt(2), Complex.ImaginaryOne / Math.Sqrt(2)); // (|0> + i |1>) / √2  | 
					
				
			 
		 
Or from its amplitudes’ real and imaginary parts:
		
		
			
			
			
			
				
					
				| 
					
				 | 
						Qubit qubit = new Qubit(1 / Math.Sqrt(2), 0, 0, 1 / Math.Sqrt(2)); // (|0> + i |1>) / √2  | 
					
				
			 
		 
It can also be created from its colatitude and longitude on the Bloch sphere:
		
		
			
			
			
			
				
					
				| 
					
				 | 
						Qubit qubit = new Qubit(Math.PI / 2, 0); // (|0> + |1>) / √2  | 
					
				
			 
		 
Shortcuts are available for notable qubits:
		
		
			
			
			
			
				
					
				| 
					
				 | 
						Qubit zero = Qubit.Zero; // |0> Qubit one = Qubit.One; // |1>  | 
					
				
			 
		 
A qubit is a quantum register of length 1 and can be manipulated as such. The Qubit class is merely a subclass of QuantumRegister designed for ease of use:
		
		
			
			
			
			
				
					
				| 
					
				 | 
						QuantumRegister quantumRegister = Qubit.Zero;  | 
					
				
			 
		 
Shortcuts are also available for notable quantum registers:
		
		
			
			
			
			
				
					
				| 
					
				 | 
						QuantumRegister EPRPair = QuantumRegister.EPRPair; // (|00> + |11>) / √2 (Einstein–Podolsky–Rosen pair) QuantumRegister WState = QuantumRegister.WState; // (|001> + |010> + |100>) / √3 (W state) QuantumRegister WState4 = QuantumRegister.WStateOfLength(4); // (|0001> + |0010> + |0100> + |1000>) / 2 (generalized W state for 4 qubits) QuantumRegister GHZState = QuantumRegister.GHZState; // (|000> + |111>) / √2 (simplest Greenberger–Horne–Zeilinger state) QuantumRegister GHZState4 = QuantumRegister.GHZStateOfLength(4); // (|0000> + |1111>) / √2 (GHZ state for 4 qubits)  | 
					
				
			 
		 
A quantum register can be created from other quantum registers (variadic constructor, also works with QuantumRegister[] and IEnumerable<QuantumRegister>):
		
		
			
			
			
			
				
					
				| 
					
				 | 
						QuantumRegister quantumRegister = new QuantumRegister(Qubit.Zero, QuantumRegister.EPRPair); // (|000> + |011>) / √2  | 
					
				
			 
		 
Or from the 2n complex probability amplitudes of each of its pure states (variadic constructor, also works with Complex[] and IEnumerable<Complex>):
		
		
			
			
			
			
				
					
				| 
					
				 | 
						QuantumRegister quantumRegister = new QuantumRegister(0, 1 / Math.Sqrt(2), 1 / Math.Sqrt(2), 0); // (|01> + |10>) / √2 QuantumRegister error = new QuantumRegister(0, 1, 0); // the number of amplitudes is not a power of 2; throws System.ArgumentException  | 
					
				
			 
		 
Quantum registers are mostly used to represent numbers and can therefore be created from integers (this will naturally generate pure states):
		
		
			
			
			
			
				
					
				| 
					
				 | 
						QuantumRegister seven = new QuantumRegister(7); // |111> QuantumRegister threeOnThreeBits = new QuantumRegister(3, 3); // |011>  | 
					
				
			 
		 
A quantum register can be observed and collapse into a pure state (note: use your own Random instance to avoid issues with pseudorandom number generator determinism):
		
		
			
			
			
			
				
					
				| 
					
				 | 
						Random random = new Random(); QuantumRegister quantumRegister = QuantumRegister.EPRPair; quantumRegister.Collapse(random); // |00> or |11>  | 
					
				
			 
		 
Quantum gates are required to operate on quantum registers. Shortcuts are also available for notable quantum gates:
QuantumGate.HadamardGate 
QuantumGate.HadamardGateOfLength(int registerLength) 
QuantumGate.NotGate 
QuantumGate.PauliYGate 
QuantumGate.PauliZGate 
QuantumGate.SquareRootNotGate 
QuantumGate.PhaseShiftGate(double phase) 
QuantumGate.SwapGate 
QuantumGate.SquareRootSwapGate 
QuantumGate.ControlledNotGate 
QuantumGate.ControlledGate(QuantumGate gate) 
QuantumGate.ToffoliGate 
QuantumGate.FredkinGate 
QuantumGate.QuantumFourierTransform(int registerLength) 
Quantum gates can also be created from a bidimensional array of complex numbers:
		
		
			
			
			
			
				
					
				| 
					
				 | 
						QuantumGate quantumGate = new QuantumGate(new Complex[,] { 	{ 1, 1 }, 	{ 1, 0 }, });  | 
					
				
			 
		 
Applying a quantum gate to a quantum register is as simple as using the multiplication operator on them:
		
		
			
			
			
			
				
					
				| 
					
				 | 
						QuantumRegister quantumRegister = Qubit.Zero; // |0> quantumRegister = QuantumGate.HadamardGate * quantumRegister; // (|0> + |1>) / √2 quantumRegister = QuantumGate.HadamardGate * quantumRegister; // |0> quantumRegister = QuantumGate.NotGate * quantumRegister; // |1>  | 
					
				
			 
		 
Unary gates only operate on one qubit, binary gates on two, etc.:
		
		
			
			
			
			
				
					
				| 
					
				 | 
						QuantumRegister error = QuantumGate.PauliYGate * QuantumRegister.EPRPair; // a unary gate cannot be applied to two qubits; throws System.ArgumentException  | 
					
				
			 
		 
Please note that this is not a literal arithmetic library. While measures have been taken to circumvent a range of errors caused by floating-point precision, the use of QuantumRegister.AlmostEquals might be required in places:
		
		
			
			
			
			
				
					
				| 
					
				 | 
						QuantumRegister almostOne = new Qubit(Complex.One, Math.Cos(Math.PI / 2) * Complex.One); QuantumRegister one = new Qubit(Complex.One, 0); almostOne.AlmostEquals(one); // true  | 
					
				
			 
		 
Hope you find this useful!